A DE of the form

$$y' = f(Ax + By + C)$$

can always be reduced to a separable equation by means of substitution

$$u = Ax + By + C.$$

Example 1

Solve
$$dy/dx = (-2x + y)^2 - 7$$
, $y(0) = 0$.

Solution:

Let u = -2x + y, then du/dx = -2 + dy/dx, $du/dx + 2 = u^2 - 7$ or $du/dx = u^2 - 9$

This is separable. Using partial fractions, $\frac{du}{(u-3)(u+3)} = dx$

or

$$\frac{1}{6} \left[\frac{1}{u-3} - \frac{1}{u+3} \right] du = dx$$

then we have

Example 1

$$\frac{1}{6} \ln \left| \frac{u-3}{u+3} \right| = x + c_1$$

or
$$y = 2x + \frac{3(1 + ce^{6x})}{1 - ce^{6x}}$$

6r

Solving the equation for u and the solution is

$$u = \frac{3(1 + ce^{6x})}{1 - ce^{6x}}$$

Applying y(0) = 0 gives c = -1.

$$y = 2x + u = 2x + \frac{3(1 - e^{6x})}{1 + e^{6x}}$$